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ABSTRACT.We present an overview of new research efforts un-
derway at Sandia National Laboratories to understand the sources of
uncertainty and error in computational structural dynamics and other
physics simulations, and to quantify their effects on predictive accu-
racy. In order to establish confidence in computational simulations
as these simulations move further from the established experimental
database, a new approach to modeling and simulation validation is
needed. In particular, when simulations are used to qualify the safety
and reliability of systems, we believe that validation should be based
upon a comprehensive quantification of uncertainties and errors
from all phases of the modeling and simulation process. Uncertainty
and error quantification is a two-step process, the first step being the
identification of all uncertainty and error sources in each phase of
modeling and simulation. The second step is the assessment and
propagation of the most significant uncertainties and errors through
the phases of the modeling and simulation process to the predicted
response quantities. This paper outlines the phases of modeling and
simulation, the distinction between uncertainty and error, and a cat-
egorization of uncertainty and error sources in each phase of model-
ing and simulation. We also address the question of how
uncertainties in the form or structure of the model might be assessed
using multiple models. Examples from linear structural dynamics
are given to illustrate these concepts.

1. Introduction

Model validation in structural dynamics is a well established disci-
pline which bridges analysis and experiment. This field has tradi-
tionally focused on reconciliation of test-to-analysis results with the

goal of improving the predictive accuracy of computational model-
based analysis. Model validation and “virtual testing” have played
key roles in the engineering development of advanced aerospace and
flight systems. This is because some qualification tests simply can-
not be performed (or it is absurd to do so); i.e. we don’t launch a sat-
ellite to see whether it will survive launch. Other tests can be
performed but are not because a completely test-based approach
would be prohibitively expensive. Therefore, to some extent, nearly
all advanced engineering systems rely on computational simulations
to not only improve designs but also to qualify, i. e. ensure the sat-
isfactory performance of, the system hardware and design. For this
reason, validation of the computational simulations is key to ensur-
ing the performance, safety and reliability of these systems.

In structural dynamics, the criteria typically set for validation of
analysis by experiment have been geared towards deterministic
analysis. These validation criteria, such as the correlation of numer-
ical model predictions to the frequencies and mode shapes estimated
from modal testing, are both qualitative and subjective. The error
threshold levels are intrinsically tied to what types of qualification
testing will be performed, the degree of extrapolation in the critical
analyses, and the notion of a factor of safety on all safety margin
stress calculations. This is not to discount the value of these thresh-
olds: they have evolved over time and express a considerable degree
of expert knowledge and experience. For any particular modeling
and simulation analysis, however, this type of validation does not
enhance our understanding of the predictive accuracy of the analysis
as we use the model to extrapolate from our measured database.

Some researchers in computational structural dynamics have used
statistical techniques in parameter estimation to begin to address un-
certainties [1], and have also considered the use of both uncertain
parameters and historical test-analysis correlation measures to deter-
mine predictive accuracy intervals for linear and nonlinear structural
dynamics modeling and simulation [2]. The primary motivations for



addressing uncertainties are a.) the stochastic or uncertain nature of
key elements in engineering design and reliability problems, and b.)
the need to establish the credibility of computational simulations.

A convergence of trends are pushing the current “way of doing
things” and lead us to reconsider how computational simulation is to
be used in system qualification in the future, and how those analyses
are to be validated. “Smaller, cheaper, faster” implies less testing on
systems which are less easily analyzed than in the past. Computa-
tional technology provides tools for improving analysis predictions
by reducing discretization errors and reducing the degree of analysis
simplification by enabling more detail and better handling of cou-
pled multiphysics. Unfortunately, systematic improvements in anal-
ysis predictions have not been seen as computational technologies
have improved. We believe a key reason is that total errors are being
driven more by modeling simplification than by solution errors. It is
also possible that significant discretization and solution errors are
still present, but that they are not being detected because of a lack of
attention to mesh convergence issues. Finally, it may be that in-
creased grid resolution has simply replaced modeling and solution
errors at the macro scale with lack of knowledge (e.g. unknown joint
physics) at the micro level.

In order to establish confidence in computational simulations as
these simulations move further from the established experimental
database, a new approach to modeling and simulation validation is
needed. In particular, when simulations are used to qualify the safety
and reliability of systems, we believe that validation should be based
upon a comprehensive quantification of uncertainties and errors
from all phases of the modeling and simulation process. This quan-
tification would consider uncertainties arising from both continuous
parametric uncertainties, such as variability in a geometric dimen-
sion or material property, and discrete modeling uncertainties, such
as uncertainty about the physics equations governing joint compli-
ance. In addition, quantification of errors would include numerical
solution errors, such as those arising from grid resolution, as well as
modeling errors, such as simplified modeling assumptions.

We believe there are two stages to uncertainty quantification: first,
identification of all error and uncertainty sources; and second. as-
sessment and propagation of uncertainty and error effects through
the simulation to output quantities. This paper will present a general
classification of all sources of uncertainty and error necessary to de-
termine global estimates of uncertainty for predicted quantities of
interest. This framework will then be applied to a structural dynam-
ics problem: the prediction of peak acceleration on a circular plate
due to random force excitation. Also, the sensitivity of the predicted
quantity to some significant and nontraditional uncertainty and error
sources, such as the partial differential equations and spatial discret-
ization, will be examined via multiple numerical simulations.

2. Sources of Uncertainty and Error in Computational Mechan-
ics Simulations

In this section we discuss the sources of uncertainty and error in
computational simulations and propose an overall framework which
categorizes these sources and their interactions. This framework is
presented in greater detail in [3]. We begin by developing a new
structure of the general phases of modeling and simulation. This
new view is built upon combining modeling and simulation phases

recognized in the disciplines of operations research and the numeri-
cal solution of partial differential equations. Within this structure,
we believe that a clear distinction should be made between uncer-
tainty and error and we propose comprehensive definitions for these
terms. Specific classes of uncertainty and error sources are then de-
fined that can occur in each phase of modeling and simulation.

2.1 Phases of Modeling and Simulation

We will use the definition ofmodelgiven by Neelamkavil [4]: “A
model is a simplified representation of a system (or process or theo-
ry) intended to enhance our ability to understand, predict, and possi-
bly control the behavior of the system.” Bymodelingwe mean the
construction or improvement of a model. We also use Neelamkavil’s
definition of simulation: “A simulation is the process of imitating
(appearance, effect) important aspects of the behavior of the sys-
tem.” In other words, simulation is the exercise of the model. Here
we are specifically interested in the exercise of computer models,
i.e., computer codes based on mathematical models.

After reviewing existing literature in both the operations research
and computational mechanics fields, we have developed a represen-
tation of the phases of modeling and simulation appropriate to sys-
tems or processes analyzed by the numerical solution of partial
differential equations (PDE’s) as shown in Figure 1. These phases
are preceded by an initial phase which includes the definition of the
physical system and specification of the requirements or objectives
of the modeling and simulation. Following this initial phase are six
distinct phases which are described as follows.

Conceptual Modeling The conceptual modeling phase determines
what physical events, or sequence of events, will be considered and
what types of coupling of different physical processes will be con-
sidered. During this phase, no mathematical equations are written,
but the fundamental assumptions of the events and physics are
made. Only conceptual issues are considered, with an emphasis on
determining all possible factors that could affect the requirements
set for the modeling and simulation. It is important in this phase that
all possible physics-couplings are listed that may influence the re-
sults even of they may not be considered later on in the analysis.
This is critical because if events or couplings are not considered in
this phase, they cannot be resurrected later in the process. This is
similar to the fault-tree structure in probabilistic risk assessment of
high consequence systems, such as in nuclear reactor safety analy-
ses. Even if a certain sequence of events is considered extremely re-
mote, it should still be considered as a possible event sequence in the
fault-tree. Whether the event sequence will eventually be analyzed
is not a factor in including it in the conceptual modeling phase.

Mathematical Modeling During the mathematical modeling phase,
the precise mathematical, i.e., analytical, statement of the problem,
or series of event-tree-driven problems, to be solved is developed.
Any complex mathematical model of the problem, or physical sys-
tem, is likely to be composed of many submodels. The complexity
of the models depends on the physical complexity of each phenom-
enon being considered, the number of physical phenomena consid-
ered, and the level of coupling of different types of physics. The
mathematical model formulated in this phase is considered to be the
complete specification of all of the PDE’s for all components of the
system. Along with the PDE statement of the mathematical model,



all of the appropriate initial and boundary values, and the required
auxiliary models must be specified for the physics considered.

Discretization of the Model The next phase is the conversion of the
PDE form of the mathematical model into a discrete numerical,
model. This phase takes into account the conversion of the mathe-
matics from a calculus problem to an arithmetic problem. In the dis-
cretization phase, all of the spatial and temporal differencing
methods, discretization of the boundary conditions, discretization of
the geometric boundaries, and grid generation methods are specified
in analytical form. In other words, algorithms and methods are pre-
scribed in mathematically discrete form, but the spatial and temporal
step sizes are not specified. This step focuses on the conversion from
continuum mechanics to discrete mathematics, not on numerical so-
lution issues. We believe that the continuum model and the discrete
model should be separately represented in the phases of modeling
and simulation. This phase deals with questions such as consistency
of the discrete equations with the PDE’s, and conversion of mathe-
matical singularities in the continuum into discrete representations.

Programming of the Discrete Model The next phase, which is com-
mon to all computer modeling and simulation, is the computer pro-
gramming phase. This phase converts the algorithms and solution
procedures defined in the previous phase into a computer program.
This phase has probably achieved the highest level of maturity be-
cause of many years of programming development and software
quality assurance efforts. These efforts have made a significant im-
pact in areas such as commercial graphics, mathematics, and ac-
counting software, telephone circuit switching software, and flight
control systems. Little impact, however, has been made in corporate
and university developed software developed for research applica-
tions in computational mechanics.

Numerical Solution of the Programmed Discrete Model The next
phase, individual numerical solutions are obtained. This phase is the
most specific of all phases of modeling and simulation. At the con-
clusion of this phase there are no quantities left arithmetically unde-
fined or continuous. For example, grid spacing is specified,
parameters such as material constants and damping coefficients are
specified, and time and space exist only at points. If uncertainty in
some inputs or physical parameters of the numerical model are
passed through to the numerical solution phase, as is commonly the
case in nondeterministic analysis, then multiple computational solu-
tions would be required. Consider, for example, a shock response
analysis where the material elastic modulus is specified by some
probability distribution. Then thousands of Monte Carlo solutions
may be required to address the problem definition.

Interpretation of Results The final phase concerns the interpretation
of computational results. This phase involves determining the meth-
ods for presentation of computed results into a usable form. This
phase can also be described as the construction of continuous func-
tions based on the discrete solutions obtained in the previous phase.
Here the continuum mathematics formulated in the mathematical
modeling phase is approximately reconstructed. This phase is spe-
cifically called out because of the sophistication of the software that
is being developed to comprehend modern computational simula-
tions. This area includes graphical visualization of results, anima-
tion, and perhaps use of sound or virtual reality. Some may argue
that this phase is simply “post-processing” of the computational da-

ta. This description does not do justice, however, to the rapidly
growing importance of this area and its capability for introducing
unique forms of errors.

2.2 Sources of Uncertainty and Error

We now discuss the sources of uncertainties and errors that are as-
sociated with each phase of modeling and simulation, as illustrated
in Figure 2. Essentially all of the individual sources of uncertainty
and error described below have been pointed out by researchers in
the past. Some, like computer round-off, are very well understood,
even to the point that most computational analysts do not make note
of it. Others are poorly understood or characterized, and it may be
unclear whether they should be treated as an uncertainty or an error.
For this we must first develop comprehensive definitions for uncer-
tainty and error that are appropriate for modeling and simulation.

Definitions of Uncertainty and Error The most developed definition
or understanding of uncertainty is in regard to experimental mea-
surements. Although this is helpful, we require definitions that apply
to the much broader topic of modeling and simulation. We define
uncertainty as apotential deficiency in any phase or activity of the
modeling process that is due tolack of knowledge. The first feature
which this definition stresses is “potential”, meaning that the defi-
ciency may or may not occur. In other words, there may be no defi-
ciency, say in the prediction of some event, even though there is a
lack of knowledge. Whether the deficiency occurs is most common-
ly represented by some type probability distribution of occurrence.
The second key feature of uncertainty is that its fundamental cause
is incomplete information. Since the cause of uncertainty is lack of
knowledge, increasing the knowledge base can reduce uncertainty.

We defineerror as arecognizable deficiency in any phase or activ-
ity of modeling and simulation that isnot due to lack of knowledge.
This definition stresses the feature that the deficiency is identifiable
or knowable upon examination, that is, the deficiency is not deter-
mined by lack of knowledge. By this we mean that there is an
agreed-upon approach which is considered to be more accurate. If
divergence from the correct or more accurate approach is pointed
out, the divergence is either corrected or allowed to remain. This im-
plies a segregation of error types: error can be eitheracknowledged
or unacknowledged. Examples of acknowledged errors are: finite
precision arithmetic in a computer; physical approximations made to
simplify the modeling of a physical process; a specified level of it-
erative convergence of a numerical scheme; conversion of the gov-
erning PDE’s into discrete equations. When the analyst introduces
these acknowledged errors in the modeling or simulation process,
there is typically some idea of the magnitude of the error introduced.
Unacknowledged errors are blunders, or mistakes. That is, the ana-
lyst intended to do one thing in the modeling and simulation, but, for
example, due to human error, did another. There are no straightfor-
ward means to estimate or bound the contribution of unacknowl-
edged errors, although steps, such as independent checks and
reviews, can reduce their frequency of occurrence.

We will now detail the sources of errors and uncertainties in four of
the phases discussed previously. A discussion of error sources in the
programming and results interpretation can be found in [3].

Conceptual Modeling Uncertainties The dominant deficiency in the



conceptual modeling phase is uncertainty, as opposed to error. Con-
ceptual modeling uncertainties arise in the formulation of the analy-
sis of the event, and in the lack of knowledge of the event. Figure 2
shows the two types of uncertainties associated with conceptual
modeling: scenario abstraction and lack of system knowledge. By
scenario abstraction we mean the determination of all possible phys-
ical events, or event sequences, that may affect the goals of the anal-
ysis. For relatively simple systems, such as low level vibration of a
thin circular plate in a vacuum, scenario abstraction can be straight
forward. For complex engineering systems exposed to a variety of
interacting factors, scenario abstraction is a mammoth undertaking.

The second class of uncertainty listed, lack of system knowledge, re-
fers to uncertainties that are primarily due to limited information
about the system. This class clearly affects and interacts with scenar-
io abstraction, but here we stress lack of knowledge for a specific
scenario, rather than the possible existence of the scenario. Two im-
portant examples for this class of uncertainty should be mentioned.
First is the lack of knowledge of the initial state of key elements of
the system. For complex engineered systems, knowledge of the fac-
tors, such as the following, becomes important: was the system cor-
rectly manufactured and assembled, how well was the system
maintained, and what level of uncertainty exists for the properties of
the components which are important in the analysis (such as dimen-
sions, densities, elastic moduli, etc.). The second example is lack of
knowledge of future conditions affecting the system. Examples of
these are environmental conditions and human interaction with the
system during the event. These are examples where it is not possible
to significantly reduce lack of knowledge, and reduce the uncertain-
ty, by improved sampling of past events.

Mathematical Modeling Uncertainties and Errors Mathematical
modeling contains both uncertainties and errors. Uncertainties and
errors that occur in this phase arise from three mathematical sources
(Figure 2): the continuum equations for conservation equations of
mass, momentum, and energy; all of the auxiliary equations which
supplement the conservation equations; and all of the initial and
boundary conditions required to solve the PDE’s. The primary un-
certainties that occur in mathematical modeling are two fold. First is
inadequate knowledge of parameters in known physics. Parameter
uncertainty is by far the most commonly analyzed in uncertainty
analyses. The second type of uncertainty is that due to limited, or in-
adequate, knowledge of the physics involved. For example, not
knowing the PDE’s which govern friction in a mechanical joint. Er-
rors in the mathematical modeling phase can be equally significant.
The primary errors are those due to mathematically representing the
physics in a more simplified form than is known to be appropriate
for the results required from the modeling and simulation. The math-
ematical modeling uncertainties and errors together are sometimes
referred to “model form errors” or model structural errors”.

A primary example of uncertainty that occurs in the conservation
equations for structural dynamics is the localized nonlinear physics
of friction, contact, and impact in bolted joints. Auxiliary physical
equations in the mathematical model are equations such as the ma-
terial constitutive models and failure models. Examples of uncer-
tainties in initial and boundary conditions are: inaccurately known
initial velocity of a body, and imprecisely known geometry of mate-
rials because of manufacturing and assembly variances. Errors in
mathematical modeling can also exist. Some examples of acknowl-

edged errors are: assumption that a plate can be modeled using thin
shell theory when three dimensional effects are important, assump-
tion of a constant beam cross-section when the section is actually not
constant, and assumption of material and geometric linearity when
stresses and displacements are not small. All of these examples are
of the character that physical modeling approximations were made
to simplify the mathematical model and the subsequent solution.

Discretization Errors The discretization phase converts the continu-
um model of the physics into a discrete mathematics problem. Since
this is fundamentally a mathematics approximations topic, errors
and not uncertainties are the dominant issue in this phase. Some may
question why this conversion process should be separated from the
solution process, where the characteristic mesh size and time inte-
gration step sizes are set. We argue that this conversion process is
the root cause of more difficulties in the numerical solution of
PDE’s than is generally realized. This is particularly true in cases of
nonlinear phenomena such as fracture dynamics and frictional con-
tact in mechanical joints. It can also be evident in linear structural
mechanics and dynamics, where the presence of singularities in the
continuum model creates solution error which does to disappear as
the grid size approaches zero. It is becoming increasing clear that the
mathematical features of strongly nonlinear and chaotic systems can
be fundamentally different between the continuous and discrete
form, regardless of grid size [5,6].

As shown in Figure 2, we identify three sources of discretization er-
ror; discretization of the conservation laws, the boundary conditions,
and the initial conditions. The types of errors we are pointing out
here are typically very difficult to isolate. In finite differencing, one
method of identifying these type errors is to analytically prove
whether the method is consistent; that is, do the finite difference
equations approach the continuum equations as the step size ap-
proaches zero. Related issues dealt with in this phase: are the con-
servation laws satisfied for finite grid sizes, does the numerical
damping approach zero as the mesh size approaches zero, and do
aliasing errors exist for zero mesh size. Discretization of PDE’s are
also involved in the conversion of von Neumann and Robin’s, i. e.,
derivative, boundary conditions to difference conditions. We in-
clude the conversion of continuum initial conditions to discrete ini-
tial conditions, not because there are derivatives involved, but
because spatial singularities may be part of the initial conditions.
Some may argue that these discontinuities and boundary singulari-
ties do not actually occur in nature, so the issue of accuracy of rep-
resentation of these is superfluous. This misses the point, however.
If these features exist in the mathematical model of the physics, the
issue is whether the discrete model represents them accurately; not
whether they exist in nature. This is an issue of verification (solving
the problem right) rather than validation (solving the right problem).

Numerical Solution Errors Numerical solution errors have been in-
vestigated longer and in more depth, than any of the errors associat-
ed with the numerical solution of PDE’s. Indeed, they have been
investigated since the beginning of numerical solutions; Richardson
in 1910 [7]. These deficiencies in the solution of the discrete equa-
tions are properly called errors because they are approximations to
the solutions of the original PDE’s. As shown in Figure 2, we cate-
gorize these errors into four categories: spatial grid convergence,
time step convergence, iterative convergence, and computer round-
off. Of these, perhaps the only one that needs explanation is iterative



convergence. By this we mean the finite accuracy to which algebraic
discrete equations are solved. In linear structural dynamics, iterative
convergence errors can occur when iterative methods, e. g. conju-
gate gradients, are used to solve the large matrix equation within a
time step. Iterative errors can also occur in most algorithms, such as
Lanczos, used to iteratively solve the generalized symmetric eigen-
value problem. In fact, since large matrix algebra problems are typ-
ically posed at each iteration of an iterative eigenvalue method, we
can encounter both inner and outer loop iterative convergence errors
if iterative methods are used to solve the matrix equation. The use of
iterative techniques becomes even more necessary as nonlinear phe-
nomena are introduced into the physics; in that case many levels of
iterative convergence errors may be encountered.

Although we categorize four sources of solution error, it should be
noted that they are of two types. The first is due to the finite dis-
cretized solution of the PDE’s; spatial grid convergence and time
step size convergence are of this type. The second type is due to the
approximate solution of the discrete equations, that is, what errors
are made in the solution of the resulting discrete equations. Iterative
convergence and round-off error are of this type and they account for
the difference between the exact solution of the discrete equations
and the computer solution obtained.

3. Assessment and Propagation of Model Uncertainty

In the previous section, we presented an overall framework for the
phases of modeling and simulation, and within that framework cat-
egorized sources of uncertainties and errors which are important in
modeling and simulation. Understanding the sources of uncertainty
or error in a particular analysis problem, however, is only the first
step in quantifying the total combined uncertainty and error in the
simulation. The second step is to propagate those uncertainties and
errors from their origin and through the subsequent phases of the
simulation to determine their impact on the output of the simulation.
While a great deal of attention has been given to ways of estimating
probability distributions of simulation outputs given the distribu-
tions of continuous, nondeterministic inputs, relatively little atten-
tion has been paid to the model itself. By the form of the model we
mean those attributes, such as simplifying assumptions, choice of
PDE’s, computational mesh topology, and other non-parameterized
features which determine the form of the PDE’s and ultimately the
order of the algebraic problem. We believe that, in order to quantify
the major sources of uncertainty and error in modeling and simula-
tion, we must develop procedures to quantify the effects of these
modeling errors and uncertainties.

One approach to the assessment of mathematical model uncertainty,
as distinct from parameter uncertainty, is suggested by Draper [8].
This approach has been termed by Draper and others [9] as Bayesian
Model Averaging, because the approach uses the Bayesian concept
of prior probability densities which are then revised to incorporate
new data. In statistical parameter estimation, Bayesian methods are
similar to maximum likelihood estimates in that they consider the
relative uncertainty or reliability of the relevant data. They are dif-
ferent, however, in that they also consider prior beliefs or qualitative
information on the parameter being estimated, which serve to regu-
larize the estimation.

While probability concepts are appropriate for addressing uncertain-

ties, it is not yet clear how useful they may be in assessing the effects
of modeling errors, such as acknowledged simplifying assumptions
and numerical errors caused by finite spatial discretization. As dis-
cussed in the preceding section, uncertainties and errors are not
equivalent. They are, however, similar in that we are interested in
the sensitivity of the simulation output to both. In the present discus-
sion and subsequent example, we will deal with multiple competing
models which differ in their simplifying assumptions, element to-
pology, and model size. While these model attributes are a combina-
tion of errors and uncertainties, we intend to apply the Bayesian
model averaging approach in order to both illustrate the methodolo-
gy and to begin assessing the effects of these errors and uncertainties
on the simulation output.

In the problem of assessing mathematical modeling uncertainty, we
must address aspects of the model which are not parameterized, at
least not in continuous terms. Draper proposes that, analogous to a
continuous expansion of models in a space measured by a vector of
continuous parameters, we instead consider a discrete expansion of
possible model structures. It is then required that the probabilities of
all the models considered together sum to unity. We know that we
necessarily cannot consider the potential infinity of model structures
which could potentially be applied, correctly or incorrectly, to a giv-
en problem. Therefore, we seek models which are supported by ex-
pert knowledge, are supported by available diagnostic
experimentation, and differ markedly in their predictions. This is be-
cause, if a model has no prior support of expert opinion, it cannot
gain any support from new data. That is, the model’s probability will
always be zero. Similarly, if a particular model has some prior sup-
port, but no support from new data, it will eventually lose influence
in competition with other models that correlate better with the data.
Finally, if a number of models with nontrivial probabilities all pre-
dict the problem in the same way, they are not really contributing to
the quantified uncertainty, although their relative structural diversity
would enhance confidence in the uncertainty quantification itself by
their representation of a large model space.

After selection of the models to be considered in such an analysis,
we must then assign probabilities based on our relative beliefs in the
different competing models. These probabilities might be purely
subjective and qualitative, or they may begin with assumed subjec-
tive probabilities which are then updated quantitatively using rele-
vant existing data. Then we determine prediction statistics for each
model and use this information to determine prediction statistics for
the space of models. That is, if  is a response quantity of interest
given system input , with a finite set  of
structural model alternatives, we have

(1)

where  are parameters of model . This result consists of two key
quantities:  is the probability density function for the re-
sponse given the known data from a particular single model ;

 is the probability of that model given the data. The result
obtained is that the expected value for a response quantity of interest
is weighted average of model means, and the variance is a weighted
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average of individual model variances plus the variance in the means
of the models across the entire model space.

The use of multiple models to determine measures of model uncer-
tainty is strongly dependent on the relative probabilities for the com-
peting models . These probabilities can be based on purely
subjective knowledge - assigning weights based on qualitative judg-
ments. That is,

(2)

where  is based on qualitative judgements, with the constraint

(3)

Another approach is to use relevant historical database, i.e. compute
probabilities for competing models/assumptions using known data
as well as qualitative assessments. In this case, the desired probabil-
ities are given by

(4)

Here again we must have some prior model probabilities
which are assumed independent of the known data  and are subject
to the constraint given in Eqn. 3. Then these probabilities are updat-
ed via Eqn. 4, which accounts for how well each of the models cor-
relate with the data.

In conclusion, we note that the predictive distribution for a particular
model  is given by

(5)

This is what most of nondeterministic analysis methods such as
Monte Carlo and Latin Hypercube sampling, fast probability inte-
gration, stochastic finite elements, and reliability techniques attempt
to address. That is, they determine prediction statistics for model
output given uncertainty in the parameters of the model , condi-
tional on the data  and a particular model structural choice . The
present Bayesian model averaging approach extends this to a space
of models  using the structural probability weights .

4. Examples

In order to illustrate the ideas presented herein, we examine two
problems. The objective of the first problem is to identify the sourc-
es of uncertainty and error in the simulation of a simple structural
dynamics system. In the second problem, our objective is to illus-
trate the concept of modeling uncertainty assessment using a struc-
tural dynamics simulation with multiple models.

4.1 Uncertainty and Error Sources: Response of a Circular Plate

Our task in this problem is to predict the peak acceleration response
of a free-free thin aluminum (6061-T6 alloy) circular plate at r=R/2
to applied vertical force at the center of the plate. Our objective, as
stated before, is to identify all sources of errors and uncertainties

likely to be encountered in the modeling and simulation of this sys-
tem to meet the requirement of the analysis. The following list, al-
though not complete, contains what we believe to be the primary
sources which will influence prediction of the peak response:

Conceptual modeling uncertainties
• condition of the plate
• unknown variability in dimensions and material properties
• uncertainty in random force statistics
• environmental and system boundary conditions

Mathematical modeling uncertainties and errors
• Use of linear methods
• choice of PDE (2D or 3D)
• validity of shell theory for 2D elements
• Extension/shear/bending coupling effects
• nonsymmetry in problem if using axisymmetric elements
• mass modeling (consistent versus lumped)
• micromechanics of applied force
• variability in dimensions and material properties
• Errors in statistical methods for estimating peak response

Discretization Errors
• element selection
• force interpolation
• damping discretization
• time discretization (modal superposition vs. time integration)
• substructure reduction effects

Programming and documentation errors
• Errors in closed-form solutions
• binary format conversions
• equivalencing errors
• uncertain code defaults
• code/memory errors
• inaccurate documentation

Numerical solution errors
• finite spatial resolution
• finite temporal discretization
• iterative tolerance for eigensolver
• stiff/compliant elements increasing round-off errors

4.2 Assessment of Model Uncertainty: Frequencies of a Bracket

The second problem is to predict the free-free frequencies of vibra-
tion of a component mounting bracket and to determine confidence
bounds on the predicted frequencies due to considering multiple
models. In particular, we will consider variations in the geometric
features included in the model, the topology and fidelity of the spa-
tial mesh, and the types of elements used. In order to summarize the
results of the different models, we will use the Bayesian model av-
eraging approach detailed in Section 3.

The bracket, shown in Figures 3, 4 and 5, is composed of a phenolic
material, whose properties are given as:
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p x Si( )p Si( )
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∑
---------------------------------------=
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That is, the elastic modulus is defined by a normal distribution with
a mean of  and a variance of .
The coefficient of variation (COV), which is the standard deviation
as a percentage of the mean, is %. The density is as given
without any associated variability.

The three models considered are as follows:
• Model I: This model was spatially discretized using surface ele-

ments with a paving algorithm. The surface elements were then
extruded into 8-noded hexahedral solid elements. The surfaces
contain all of the thru holes, but fillets were not modeled. The re-
sulting model has 31554 degrees of freedom (DOF).

• Model II: This model was meshed from a ProEngineer solid ge-
ometry definition, which contained all holes and major fillets.
The solid was meshed using 10-node tetrahedral elements. The
resulting model has 50565 DOF.

• Model III: This model was defined geometrically using tripara-
metric solid regions. No holes or fillets were included in the ge-
ometry definition. These solids were then meshed with 8-node
hexahedral elements. The resulting model has 53202 DOF.

Note that these three models have different levels of simplifying as-
sumptions in their PDE form, as well as different spatial meshes and
different model orders (i.e. number of discrete solution variables).
Model II is the least simplified model as compared to the design
problem, but it probably contains the largest solution errors. This is
because tetrahedral elements are generally known to possess much
poorer accuracy than hexahedral elements for the same number of
grid points. Model I is the next best mathematical model and utilizes
hexahedral elements to improve mesh accuracy, but the mesh size is
coarser than the other models. Model III has the most significant
modeling simplifications, but is superior to the other models both in
terms of grid spacing and grid regularity.

In order to integrate the results of the three models together, we
chose equal weightings for the models. This reflects the mixture of
subjective judgments on the relative merits of the models. In addi-
tion to the three models considered, the uncertainty in the elastic ma-
terial modulus was also propagated through the analysis via linear
sensitivity. The results are summarized in Figure 6. The solid line
represents the mean value for the predicted modal frequencies, while
the dashed lines represent the  standard deviation interval due to
the uncertainty in the elastic modulus. Finally, the dot-dash lines are
the total  standard deviation “uncertainty” interval due to both
the modulus and the difference between the model predictions. Note
that for some modes, there is a negligible contribution from the mod-
eling variance, while for other modes this variance is larger than the
uncertainty caused by the elastic modulus. As might be expected, the
model “uncertainty” increases as the mode number increases. This
type of analysis could be valuable in determining where the predic-
tive accuracy of a set of models begins to break down.

5. Conclusions

This paper has presented a framework for the phases of modeling
and simulation in structural dynamics and other computational me-
chanics disciplines. Using this framework, sources of uncertainties
and errors have been categorized. Documenting these sources is the
first step towards the goal of quantifying their effect on the accuracy
of the simulation. Quantification of uncertainties and errors is, we

believe, a proper context for developing new principles for code ver-
ification and model validation and for ultimately enhancing the pre-
dictive accuracy of modeling and simulation. Furthermore, this
paper begins to address the problem of assessing and propagating
modeling errors and uncertainties, which are significant contributors
to total simulation errors. This work is closely aligned with other on-
going research in nondeterministic methods, so that ultimately a
comprehensive methodology for uncertainty quantification can be
developed which applies to structural dynamics, as well as other
computational mechanics, heat transfer, and coupled field problems.
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Figure 1: Proposed Phases of Modeling and Simulation

Figure 2: Sources of Uncertainty and Error in
Modeling and Simulation

Figure 3: Model I: Paved/Extruded Hex Mesh w/hole detail
 (no fillets) n=31554

Figure 4: Model II: ProE geometry (holes and fillets) meshed
w/10-node tet elements n=50565

Figure 5: Model III: Triparametric Hex Mesh w/no hole or
fillet details n=53202

Figure 6: Uncertainty Analysis using Equal Assumed Probabilities
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